[60]Fullerene—Metal Cluster Complexes: Novel Bonding Modes and Electronic Communication

KWANGYEOL LEE, HYUNJOON SONG, AND JOON T. PARK*

National Research Laboratory, Department of Chemistry and School of Molecular Science (BK 21), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea

Received July 1, 2002

ABSTRACT

[60]Fullerene can bind a variety of metal clusters via η^2 -C₆₀, μ - η^2 : η^2 -C₆₀, and μ_3 - η^2 : η^2 -C₆₀ π -type bonding modes. Multiple C₆₀ additions to a single cluster core have also been demonstrated. Modification of the coordination sphere of cluster moieties has resulted in novel transformation of the coordination mode of the C₆₀ ligand between π and σ (μ_3 - η^1 : η^1 : η^2 -C₆₀ and μ_3 - η^1 : η^2 : η^1 -C₆₀) types as well as reversible interconversion between μ_3 - η^2 : η^2 : η^2 -C₆₀ and μ - η^2 : η^2 : η^2 -C₆₀. The μ_3 - η^2 : η^2 : η^2 -C₆₀ metal cluster complexes show remarkable electrochemical stability and an unusually strong electronic communication between C₆₀ and metal cluster centers.

Introduction

Full-fledged research efforts in C_{60} science, made possible by the availability of fullerene C_{60} in mass quantity,¹ have produced numerous fullerene derivatives.^{2,3} In particular, exohedral metallofullerenes have attracted a lot of attention concerning the effects of metal coordination on the chemical and physical properties of C_{60} as well as with the direct analogy to carbon nanotubes decorated by metal nanoparticles.^{3,4} Prior to our investigations on the interaction between C_{60} and metal clusters, exohedral

Hyunjoon Song, born in 1973, received his B.S. degree in 1994 and his Ph. D. degree in 2000, under the direction of Prof. Joon T. Park from KAIST. He is currently a postdoctoral associate in Prof. Park's group at KAIST, working on the chemistry and application of fullerenes and carbon nanomaterials.

Joon T. Park, born in 1949, received his B.S. in chemistry at Seoul National University in 1972 and M.S. in physical chemistry at KAIST in 1975. He then spent four years at the chemistry division of the Agency for Defense Development (ADD). He came to the United States in 1979, completed his M.S. in organic chemistry in 1981, and obtained his Ph.D. degree in inorganic chemistry from University of Illinois at Urbana–Champaign, under the direction of John R. Shapley, in 1983. After postdoctoral work at duPont Central Research in Washington with Dr. Patricia A. Watson, he returned to ADD as a senior researcher in 1984. In 1986, he moved to KAIST as an Assistant Professor and was appointed as Professor of Chemistry in 1993. His research interests include C_{60} –metal cluster complexes, group 4 metallocene-type catalysts for olefin polymerization, and single-source precursors for thin films and nanomaterials of group 13 nitrides and metal oxides.

metallofullerene chemistry was dominated by π -type C₆₀metal interactions with η^2 -C₆₀ (for most metals)⁵ and μ - η^2 : η^2 -C₆₀ (for bimetallic Re₂, Ru₂, and Ir₂)⁶ bonding modes. Our group and that of Shapley have independently prepared various C₆₀-metal cluster complexes and demonstrated that a variety of cluster frameworks $[\text{Re}_3(\mu-\text{H})_3, 7]$ Ru₃,^{8,9} Os₃,¹⁰⁻¹² Ru₅C,^{13,14} Os₅C,^{15,16} PtRu₅C,¹⁴ Ru₆C,¹³ and Rh₆¹⁷] can bind to C₆₀ via a face-capping cyclohexatrienelike bonding mode, $\mu_3 - \eta^2 : \eta^2 - C_{60}$. In particular, we have been interested in converting the μ_3 - η^2 : η^2 : η^2 -C₆₀ bonding mode to new ones by modifying the coordination sphere of the metal centers to which C₆₀ is coordinated, and we have unraveled an aspect of C₆₀ as a versatile, multifunctional ligand exhibiting various π - and σ -bonding modes. We also demonstrated an unusually strong electronic communication between C₆₀ and metal cluster centers that can be readily fine-tuned with attached ligands on the metal cluster. Although there have been several reviews on metallofullerene complexes featuring our earlier results,³ they fall short of describing the significant advances achieved recently in the area of C₆₀-metal cluster complexes. In this Account, we aim to discuss general synthetic methods, novel bonding modes of the C₆₀ ligand on cluster frameworks, and unique electrochemical properties of C₆₀-metal cluster complexes.

Synthesis and Structural Characterization of μ_3 - η^2 : η^2 : η^2 -C₆₀ Metal Clusters

[60]Fullerene–metal cluster complexes have been prepared either by direct thermal reaction of the second-row transition metal carbonyl clusters with C_{60} or by chemical activation of the third-row metal carbonyl clusters with Me₃NO/MeCN followed by reaction with C_{60} .^{7–17} Chlorobenzene is the solvent of choice for the preparation of the C_{60} -metal cluster complexes because it dissolves a large quantity of C_{60} , has a relatively high boiling point that is useful for thermal reactions, and can be easily

Kwangyeol Lee, born in 1971, received his B.S. degree from KAIST in 1992 and his Ph.D. degree, under the supervision of Prof. John R. Shapley, from University of Illinois at Urbana—Champaign in 1997. Since 1998, he has been working as a postdoctoral associate in Prof. Park's group at KAIST. His research interests are in metallofullerene chemistry, fullerene-based materials application, and nanostructured materials.

 $^{^{*}}$ To whom correspondence should be addressed. Phone: 82-42-869-2826. Fax: 82-42-869-2810. E-mail: jtpark@mail.kaist.ac.kr.

FIGURE 1. Molecular structure of 1.

removed under vacuum due to its high volatility. Most C_{60} -metal cluster compounds thus prepared are soluble in solvents such as carbon disulfide, toluene, chlorobenzene, and 1,2-dichlorobenzene.

Trinuclear Clusters. The first C₆₀-metal cluster complex, $Os_3(CO)_{11}(\eta^2-C_{60})$ (1),^{18,19} was prepared from the reaction of Os₃(CO)₁₁(NCMe) and C₆₀. The C₆₀ moiety in 1 takes an equatorial position at an osmium atom in an η^2 fashion by binding through a 6–6 ring fusion, as shown in Figure 1. The Os-C₂ (C₆₀) bond lengths (2.21 and 2.26 Å) are comparable to those in other η^2 -C₆₀ complexes.⁵ The metal-coordinated C–C (C_{60}) bond length of 1.42 Å is only slightly elongated from 1.38 Å, the length of an unperturbed double bond of C_{60} , implying that the π -backdonation in **1** is significantly suppressed by the presence of strong π -acid carbonyl ligands on the osmium atoms. Longer C–C distances have been observed for other η^2 -C₆₀ complexes with donor phosphine ligands at the metal center: 1.45 Å in Pd(PPh₃)₂(η²-C₆₀),^{5f} 1.48 Å in RhH(CO)- $(PPh_3)_2(\eta^2-C_{60})^{5g}$ 1.50 Å in W(CO)₃(dppe)(η^2-C_{60}),^{5h} and 1.53 Å in Ir(CO)Cl(PPh₃)₂C₆₀.^{5b} Various substitution products of **1**, such as $Os_3(CO)_{10}(NCMe)(\eta^2-C_{60})$, $Os_3(CO)_{10}$ - $(PPh_3)(\eta^2-C_{60})$, and $Os_3(CO)_9(PR_3)_2(\eta^2-C_{60})$ (R = Me, Ph), have also been prepared and characterized.¹⁰

Successive losses of the carbonyl ligands from 1 might be expected to form μ - η^2 : η^2 -C₆₀ and μ_3 - η^2 : η^2 : η^2 -C₆₀ complexes, but thermolysis of $Os_3(CO)_{10}(NCMe)(\eta^2-C_{60})$ affords $Os_3(CO)_9(\mu_3-\eta^2:\eta^2:\eta^2-C_{60})$ (2) as the only product (23%).¹⁰ A better yield (32%) was obtained from an alternative reaction of Os₃(CO)₁₀(NCMe)₂ and C₆₀ in refluxing chlorobenzene.¹⁰ The first structural details of the μ_3 - η^2 : η^2 : η^2 -C₆₀ bonding mode were elucidated by Shapley et al. on the complex $\text{Ru}_3(\text{CO})_9(\mu_3 - \eta^2 : \eta^2 - C_{60})$ (3, see Figure 2), which is obtained from the reaction between $Ru_3(CO)_{12}$ and C₆₀ in refluxing hexane (4%) or chlorobenzene (16%).⁸ The Ru₃ triangle is positioned centrally over a sixmembered carbon ring in C₆₀, and the two planes are essentially parallel (dihedral angle = 0.9°). The C₆-ring of C₆₀ takes the form of cyclohexatriene, with each of its double bonds coordinated to a metal center. The average metal-coordinated C–C (C_{60}) bond length (1.43 Å) and the average M–C (C_{60}) length (2.27 Å) in **3** show little difference from those in **1**. The failure to form stable $M(\eta^6 C_{60}$) compounds has been attributed to the curvature of C_{60} , which orients each exohedral p- π orbital at an angle (ca. 10°) away from perpendicular to the face of the C_6 -

FIGURE 2. Molecular structure of 3.

FIGURE 3. Propeller-like geometry for phosphine substitution in 2.

ring.²⁰ The geometry of the metal triangle in **3**, however, provides effective overlap with the C₆₀ p- π orbitals. A similar face-capping bonding pattern was previously reported for cluster compounds with benzene or related arenes.²¹

Homologous complexes **2** and **3** undergo carbonyl substitution reactions with phosphine ligands to afford $M_3(CO)_{9-n}(PPh_3)_n(\mu_3-\eta^2;\eta^2;\eta^2-C_{60})$ (M = Ru, Os; n = 1, 2)^{9,11} or $M_3(CO)_{9-n}(PMe_3)_n(\mu_3-\eta^2;\eta^2;\eta^2-C_{60})$ (M = Os; n = 1, 2, 3)¹² by reaction of lightly stabilized Os₃(CO)_{9-n}(NCMe)_n- $(\mu_3-\eta^2;\eta^2;\eta^2-C_{60})$ with a corresponding phosphine and by thermal reaction of **3** with PPh₃, respectively. A propeller-like geometry is adopted for the phosphine ligands at the equatorial positions in Os₃(CO)_{9-n}(PMe₃)_n($\mu_3-\eta^2;\eta^2;\eta^2-C_{60}$) (n = 1, 2, 3), as shown in Figure 3.¹²

Another lightly stabilized third-row metal cluster, Re₃- $(\mu$ -H)₃(CO)₁₁(NCMe), reacts with C₆₀ to produce Re₃ $(\mu$ -H)₃-(CO)₉ $(\mu_3-\eta^2:\eta^2:\eta^2-C_{60})$ (**4**) in 50% yield.⁷ Compound **4** forms monosubstitution products Re₃ $(\mu$ -H)₃(CO)₈(L) $(\mu_3-\eta^2:\eta^2:\eta^2-C_{60})$ (L = PPh₃ or CNCH₂Ph) by chemical activation with Me₃NO/MeCN and subsequent reaction with PPh₃ in refluxing chlorobenzene or by treatment with PhCH₂N= PPh₃ at room temperature.⁷ Interestingly, the phosphine or isocyanide ligand in these compounds takes an axial position on a rhenium atom for both steric and electronic reasons.⁷

Penta- or Hexanuclear Clusters. Reaction of a pentanuclear, square-pyramidal carbido cluster Ru₅C(CO)₁₅ with C₆₀ in refluxing chlorobenzene, followed by addition of PPh₃ or 1,2-bis(dipheylphosphino)ethane (dppe), forms Ru₅C(CO)₁₁(PPh₃)(μ_3 - η^2 : η^2 : η^2 -C₆₀) (**5**) and Ru₅C(CO)₁₀(dppe)-(μ_3 - η^2 : η^2 : η^2 -C₆₀) (**6**), respectively (Scheme 1).^{13,14} Complexes **5** and **6** can be alternatively prepared by direct reaction

of phosphine-substituted Ru₅C(CO)₁₄(PPh₃) or Ru₅C(CO)₁₃-(dppe) with C₆₀. Regardless of the reaction sequence, the ligand substitution reactions are regiospecific. The C₆₀ is coordinated to a triangular face of square-pyramidal Ru₅C framework, and the phosphine ligand coordinates the basal ruthenium atom that does not interact with the C₆₀ ligand. The osmium analogue of **5**, Os₅C(CO)₁₁(PPh₃)(μ_3 - $\eta^2:\eta^2:\eta^2-C_{60}$) (**7**) is obtained by chemical activation of Os₅C-(CO)₁₄(PPh₃) with 2 equiv of Me₃NO/MeCN at room temperature, followed by reaction with C₆₀ in refluxing chlorobenzene.^{15,16}

Three hexanuclear octahedral cluster frameworks, Ru₆C,¹³ PtRu₅C,¹⁴ and Rh₆,¹⁷ can interact with C₆₀ via the μ_3 - η^2 : η^2 : η^2 - bonding mode, as shown in Scheme 2. Reaction of Ru₆C(CO)₁₇ with C₆₀ in refluxing chlorobenzene, followed by addition of 1,2-bis(dipheylphosphino)methane (dppm), produces Ru₆C(CO)₁₂(dppm)(μ_3 - η^2 : η^2 : η^2 -C₆₀) (**8**),¹³ and a similar treatment of PtRu₅C(CO)₁₆ or PtRu₅C(CO)₁₄-(COD) with C₆₀ and dppe forms PtRu₅C(CO)₁₁(dppe)(μ_3 - η^2 : η^2 : η^2 -C₆₀) (**9**).¹⁴ The non-carbido hexanuclear complex Rh₆(CO)₉(dppm)₂(μ_3 - η^2 : η^2 : η^2 -C₆₀) (**10**) can be prepared by direct thermal interaction of Rh₆(CO)₁₂(dppm)₂ with C₆₀.¹⁷ Interestingly, syntheses of hexanuclear C₆₀ cluster com-

FIGURE 4. Molecular structure of 11. Phenyl groups except ipsocarbons are removed for clarity.

plexes are specific to the preparation methods, as shown in Scheme 2.

Multiple C₆₀ Coordination on a Single Cluster Core. Until recently, multiple coordination of C_{60} to a single metal center had not been accomplished, even though C₆₀, with a cone angle of 120°, is not an exceptionally bulky ligand. However, a metal cluster such as $Rh_6(CO)_{12}$ -(dppm)₂, which has enough electron-donating ligands to compensate for the electron-withdrawing effect of C₆₀, can form a stable bisfullerene adduct with a striking feature of a single metal bridging two C₆₀ cages.¹⁷ Reaction of **10** with excess C₆₀ in refluxing chlorobenzene, followed by treatment with benzyl isocyanide at room temperature, forms a fullerene-metal cluster sandwich complex, Rh₆- $(CO)_5(dppm)_2(CNCH_2C_6H_5)(\mu_3-\eta^2:\eta^2:\eta^2-C_{60})_2$ (11), which is the first example of multiple C₆₀ coordination on a single metal atom.¹⁷ Compound 11 exhibits two face-capping C₆₀ ligands on two Rh₃ triangles, joined by a common Rh metal center, as shown in Figure 4. Although the central rhodium metal atom of the puckered bowtie framework is coordinated by two electron-withdrawing C₆₀ ligands, the four Rh_{central}-C (C₆₀) distances (av. 2.17 Å) are comparable to the other eight Rh-C (C₆₀) distances (av. 2.19 Å), implying that the electron density within the cluster unit is highly delocalized. This C₆₀-metal cluster sandwich compound should serve as a model compound for two carbon nanotubes connected by a heterogeneous inorganic junction, which might find useful applications in future electronic materials. Closely following our report

^a $R = CH_2C_6H_5$. Reagents and conditions: (1) RNC, CIC_6H_5 , 80 °C; (2) (a) Me_3NO , $MeCN/CIC_6H_5$, RT, (b) PPh₃, CIC_6H_5 , 70 °C; (3) CO (2 atm), CIC_6H_5 , 100 °C; (4) PPh₃, CIC_6H_5 , 132 °C.

of the first bisfullerene adduct, Tang et al. reported the preparation of monometallic bisfullerene compounds, $[M(\eta^2-C_{60})_2(CO)_2(dbcbipy)]$ (M = W and Mo, dbcbipy = 4,4'-di(butylcarboxyl)-2,2'-bipyridine), in which two trans C_{60} ligands bind to a single metal atom in an η^2 fashion.²²

Ligand-Induced Transformation of C_{60} Bonding Modes

Interconversion between π **and** σ **Bonding Modes.** Reaction of Os₃(CO)₈(CNR)(μ_3 - η^2 : η^2 - Ω_{60}) (R = CH₂C₆H₅) (**12**) and CNR at 80 °C in chlorobenzene forms two isomeric σ - π mixed type compounds, Os₃(CO)₈(CNR)(μ_3 -CNR)(μ_3 - η^1 : η^2 : η^1 - Ω_{60}) (**13a,b**) (Scheme 3).²³ The external CNR ligand inserts into an Os-Os bond to give a bent Os₃ framework and coordinates to the three osmium metal centers via a 4e-donor μ_3 - η^2 bonding mode. The other terminal isocyanide ligand occupies an equatorial position at the central osmium atom for **13a** and at the terminal osmium atom for **13b**.

Figure 5 shows the molecular structure of **13a**, which is the first structurally characterized C_{60} -metal σ -complex. The two outer osmium atoms coordinate to the C1 and C4 atoms of the C_{60} ligand in a σ fashion, respectively, while the central osmium atom is π -coordinated to the C2 and C3 atoms in an η^2 mode. The two Os-C (C_{60}) σ -bonds (2.25 and 2.26 Å) are shorter than the Os-C₂ π -interaction (av. 2.42 Å). The bond lengths of C2-C3 (1.44 Å) and C5-C6 (1.36 Å) reveal double bond character, and the other four C-C bonds (av. 1.52 Å) exhibit single bond character. In **13a**, the sums of three angles around sp³-hybridized carbons (328° and 327°) are considerably smaller than those (av. 351°) for the other four carbon atoms with a sp² hybridization. Thus, the two sp³hybridized carbon atoms (C1 and C4) are pulled away

FIGURE 5. Molecular structure of **13a**. Phenyl groups except ipsocarbons are removed for clarity.

from the smooth curvature of the C_{60} ligand, which is manifested by the boat shape of the C_6 -ring, with sp³hybridized carbon atoms at the bow and stern positions, as shown in Figure 5. The general structural features of **13b** are similar to those of **13a**.

The cyclohexatriene-like C₆-ring of C₆₀ in **12** has undergone orbital reorganization to form a 1,4-cyclohexadiene-like ring in **13a** and **13b**. It can be envisaged that the 4e-donor CNR ligand formally provides two electrons to the antibonding orbital of an Os–Os interaction in **12**, resulting in the scission of the Os–Os bond. The remnant two electrons from the CNR ligand interrupt two π -interactions in **12** to give two Os–C (C₆₀) σ -bonds and an uncoordinated C=C bond in **13a** and **13b**. The 1,4addition isomer of C₆₀–metal σ -complexes has been proposed previously in a few cases, such as in C₆₀{Re-(CO)₅}₂ and C₆₀{Mo(CO)₃(η^5 -C₅H₄CO₂Et)}₂.²⁴

While thermal reaction of **12** with CNR produces a mixture of **13a** and **13b**, photolysis reaction of **12** with CNR by a medium-pressure Hg lamp selectively affords **13b**. Compounds **13a** and **13b** are not interconvertible either under irradiation or at elevated temperatures, which eliminates the possibility of interconversion between **13a** and **13b** by intermetallic movement of the terminal CNR ligand. The diradical species formed by homolytic cleavage of an Os–Os bond of **12** under photochemical conditions

FIGURE 6. Molecular structure of 14. Phenyl groups except ipsocarbons are removed for clarity.

is likely to be stabilized by the donor property of the terminal CNR ligand, to result in the selective formation of **13b**.

Decarbonylation of 13b with Me₃NO/MeCN and subsequent reaction with PPh₃ produces $Os_3(CO)_7(CNR)(\mu_3$ -CNR (PPh₃)(μ_3 - η^1 : η^2 - C_{60}) (14), in which the PPh₃ ligand occupies an equatorial position of a terminal osmium atom by replacing a carbonyl ligand (Figure 6).²⁵ The μ_3 - η^{1} : η^{2} : η^{1} -C₆₀ (1,4-disubstituted cyclohexadiene-like C₆-ring) moiety in 13b has undergone further orbital rearrangement to form the μ_3 - η^1 : η^1 : η^2 -C₆₀ (1,2-disubstituted cyclohexadiene-like C₆-ring) ligand (Scheme 3). The two Os-C (C₆₀) σ -bonds (2.24, 2.25 Å) are shorter than the π -bond (av. 2.45 Å), as previously observed in 13a and 13b. The bond lengths of C1-C2 (1.43 Å) and C5-C6 (1.39 Å) reveal double bond character, and the other four C-C bonds (av. 1.51 Å) show single bond character, clearly indicating the 1,3-cyclohexadiene nature of the C₆-ring of C₆₀. While the bulky PPh₃ ligand is coordinated at the less hindered outer osmium site, a similar reaction with PMe₃ produces Os₃- $(CO)_7(CNR)(\mu_3-CNR)(PMe_3)(\mu_3-\eta^{1}:\eta^2:\eta^1-C_{60})$ (15), in which the smaller PMe₃ ligand merely substitutes an axial carbonyl ligand on a central osmium atom without changing the C₆₀ bonding mode. The metal center coordinated by the donor phosphine ligand apparently prefers a π -interaction with C₆₀ because of back-donation from the metal to C₆₀. The PPh₃ ligand is easily replaced by CO to result in clean conversion of 14 to 13b, which represents a reversible interconversion between the μ_3 - η^1 : η^2 : η^{1} -C₆₀ and μ_{3} - η^{1} : η^{2} -C₆₀ bonding modes.

Further interaction of **14** with PPh₃ at an elevated temperature forms a π -type complex, Os₃(CO)₆(CNR)(μ_3 -CNCH₂C₆H₄)(PPh₃)(μ -PPh₂)(μ - η^2 : η^2 -C₆₀) (**16**), in which the C₆₀ ligand has regained the cyclohexatriene-like C₆-ring hybridization (Scheme 3).²⁵ One Os–Os bond in **14** is ruptured, and the two intact osmium metals are bridged by a μ - η^2 : η^2 -C₆₀ ligand. The bridging isocyanide ligand is

FIGURE 7. Molecular structure of 16. Phenyl groups except ipsocarbons are removed for clarity.

 $^a R = CH_2C_6H_5, P = PPh_3.$ Reagents and conditions: (1) CO (1 atm), ClC_6H_5, 80 °C; (2) ClC_6H_5, 132 °C; (3) RNC, ClC_6H_5, RT; (4) ClC_6H_5, 100 °C; (5) (a) Me_3NO, MeCN/ClC_6H_5, RT, (b) ClC_6H_5, 132 °C; (6) CO (3 atm), ClC_6H_5, 55 °C; (7) excess Ph_3P=NCH_2Ph, ClC_6H_5, RT.

bonded to all three Os centers, but the phenyl group orthometalates to the released osmium atom, forming a five-membered metalacycle (OsNC₃), as shown in Figure 7. A benzene molecule, formed by coupling of a hydride from the orthometalation and a phenyl group from PPh₃, is dissociated from the molecule to give the μ -PPh₂ moiety.

Reversible Interconversion between $\mu - \eta^2 : \eta^2 - C_{60}$ and $\mu_3 - \eta^2 : \eta^2 - C_{60}$. Os₅C(CO)₁₁(PPh₃)($\mu_3 - \eta^2 : \eta^2 - C_{60}$) (7) reacts with CO to form Os₅C(CO)₁₂(PPh₃)($\mu - \eta^2 : \eta^2 - C_{60}$) (17), in which two adjacent double bonds in a C₆-ring of C₆₀ bridge the two basal osmium atoms (Scheme 4).^{15,16} The third uncoordinated double bond in the C₆-ring of 17 is placed away from the Os₃ triangle; the C₆₀ ligand apparently rotates by 180° during the conversion of 7 to 17. A similar

 μ - η^2 : η^2 - C_{60} bonding mode with two metal centers has been previously reported for dinuclear metal compounds such as $(\mu$ - η^2 : η^2 - C_{60})[$Ir_2Cl_2(1,5$ - $COD)_2$]₂, $(\mu$ - η^2 : η^2 - C_{60})[$Cp'_2Ru_2(\mu$ - $Cl)_2$] ($Cp' = \eta^5$ - C_5Me_5), and $(\mu$ - η^2 : η^2 - C_{60})[$Re_2H_8(PMe_3)_4$].⁶ Thermolysis of **17** results in loss of a carbonyl ligand, C_{60} rotation by **180**°, and re-formation of a Os- C_2 (C_{60}) bond to give **7**, which demonstrates a reversible interconversion between μ - η^2 : η^2 - C_{60} and μ_3 - η^2 : η^2 : η^2 - C_{60} .^{15,16}

The reaction pathways for the reversible interconversion between 7 and 17 have been investigated by a labeling study with a benzyl isocyanide ligand, CNR (R = CH₂C₆H₅). The reaction of 7 with CNR at room temperature results in an addition product, Os₅C(CO)₁₁(PPh₃)- $(CNR)(\mu_3-\eta^2:\eta^2:\eta^2-C_{60})$ (18), in which the $\mu_3-\eta^2:\eta^2:\eta^2-C_{60}$ bonding mode is unaffected, but one of the Os_{apical}-Os_{basal} bonds in the square-pyramidal Os₅C framework is cleaved to form a "wing-tip-bridged butterfly" framework.^{15,16} The kinetic product 18 is transformed to a thermodynamic isomer, $Os_5C(CO)_{11}(PPh_3)(CNR)(\mu - \eta^2 : \eta^2 - C_{60})$ (19), at 100 °C; an Os-Os bond is re-formed between the bridged and "hinge" osmium atoms, followed by CNR ligand migration to an adjacent basal Os atom and removal of the Os_{apical}- C_2 (C₆₀) interaction.^{15,16} In this transformation, the C₆₀ rotation does not take place, unlike the interconversion between 7 and 17. Decarbonylation of 19 with Me₃NO/ MeCN and subsequent heating results in the formation of Os₅C(CO)₁₀(PPh₃)(CNR)(μ_3 - η^2 : η^2 -C₆₀) (**20**), which can be reconverted to **19** by interaction with CO, revealing another example of the reversible interconversion between μ - η^2 : η^2 -C₆₀ and μ_3 - η^2 : η^2 : η^2 -C₆₀ on a cluster framework.¹⁶

The origin of the disparity in the placement of the μ - η^2 : η^2 -C₆₀ ligand in **17** and **19** seems to be electronic, since the steric environment around the C₆₀ ligand appears to be essentially identical in both compounds. Two plausible mechanisms can be proposed to explain the **180°** rotation in the conversion of **7** to **17**. One obvious possibility would be a **180°** rotation of the C₆₀ ligand with the cluster core intact, via pathways of μ - η^2 : η^2 -C₆₀ to η^4 -C₆₀ and to μ - η^2 : η^2 -C₆₀, as shown in Scheme 5a. Even though the η^4 -C₆₀ bonding mode has yet to be discovered, the η^4 -cyclohexadiene moiety on a metal center has been well documented for Os₃ cluster compounds.²⁶ The other mechanism, hinted at by the isocyanide ligand addition reaction of **7**, would be a metal framework rearrangement, which involves a series of Os–Os bond scissions and formations to invert the square-pyramidal Os₅C cluster framework (Scheme 5b). In this "octahedral site exchange" mechanism, a carbonyl addition induces an Os–Os bond scission to give a bridged "butterfly" intermediate analogous to **18**, where the bridging osmium center moves into an empty vertex of an imaginary octahedron to form a half-inverted square-pyramidal geometry. Repeating similar processes may produce the inverted product. A similar cluster framework rearrangement was observed in a related arene cluster compound, Ru₅C(CO)₁₂(η^6 -C₆H₆).²⁷

Electrochemical Properties

Free C_{60} is known to be fairly electronegative, being reducible up to C₆₀⁶⁻ due to its triply degenerate LUMO.²⁸ Electrochemical studies of monometallic C₆₀ derivatives such as $(\eta^5-C_9H_7)Ir(CO)(\eta^2-C_{60})^{29}$ and $(Et_3P)_2M(\eta^2-C_{60})$ $(M = Ni, Pd, Pt)^{30}$ have revealed C₆₀-localized sequential reductions and their electrochemical instability upon reduction. Half-wave potentials $(E_{1/2})$ observed in cyclic voltammetric studies are summarized in Table 1 for free C₆₀ and for various triosmium and trirhenium cluster complexes with η^2 -C₆₀ and μ_3 - η^2 : η^2 : η^2 -C₆₀ ligands. The first reduction wave of $Os_3(CO)_{11}(\eta^2-C_{60})$ (1), at $E_{1/2} = -1.08$ V, is slightly more negative than that of free C_{60} , at $E_{1/2}$ = -1.05 V,¹⁹ which is consistent with metal-to-C₆₀ π -backdonation, as was shown in other monometallic C₆₀ complexes.^{29,30} However, the second and third reductions appear at potentials more positive by 0.10 and 0.29 V, respectively, than those of free C₆₀. This unusual anodic shifts and the IR spectroelectrochemical study of 1 imply that the first electron accepted via the C_{60} ligand in **1** is delocalized to the triosmium center with its strong π -acid carbonyl ligands, as shown in Scheme 6.19 The first reduction potentials of phosphine-substituted Os₃(CO)₁₀- $(PPh_3)(\eta^2-C_{60})$ (21) and $Os_3(CO)_9(PPh_3)_2(\eta^2-C_{60})$ (22) are further shifted to potentials more negative relative to 1 by 0.08 and 0.11 V, respectively, reflecting the electrondonating nature of the phosphine ligands. The anodic shifts of the third reduction potentials of 21 (0.22 V) and 22 (0.14 V) compared to that of free C_{60} reveal that a similar C_{60} -mediated electron delocalization occurs in $\mathbf{21}^{2-}$ and 22^{2-} species. Reduced species of 1, 21, and 22 undergo fast decomposition, as shown in Scheme 6, and thus detailed electrochemical studies are precluded for η^2 -C₆₀ cluster complexes.

Table 1. Half-Wave Potentials ($E_{1/2}$ vs $E^{\circ}_{Fc/Fc+}$) of Free C₆₀ and Various η^2 -C₆₀ and μ_3 - η^2 : η^2 : η^2 : η^2 : η^2 : η^2 :C₆₀ Metal Clusters

compound	$E_{1/2}^{0/-1}$	$E_{1/2}^{-1/-2}$	$E_{1/2}^{-2/-3}$	$E_{1/2}^{-3/-4}$	solvent	ref
C ₆₀	-1.05 (-1.08)	-1.41 (-1.44)	-1.87 (-1.90)		DM/Tol	19
$Os_3(CO)_{11}(\eta^2 - C_{60})$ (1)	-1.08(-1.12)	-1.31 (-1.34)	b(-1.61)		DM/Tol	19
$Os_3(CO)_{10}(PPh_3)(\eta^2-C_{60})$ (21)	-1.16 (-1.18)	-1.44(-1.49)	b (-1.68)		DM/Tol	19
$Os_3(CO)_9(PPh_3)_2(\eta^2 - C_{60})$ (22)	-1.19(-1.21)	-1.53 (-1.56)	b (-1.76)		DM/Tol	19
C ₆₀	-1.08	-1.46	-1.90	-2.38	DCB	11
$Os_3(CO)_9(\mu_3 - \eta^2 : \eta^2 - C_{60})$ (2)	-0.98	-1.33	-1.61	-1.74	DCB	11
$Os_3(CO)_8(PMe_3)(\mu_3 - \eta^2 : \eta^2 - C_{60})$	-1.06	-1.42	-1.93	-1.95	DCB	11
$Os_3(CO)_7(PMe_3)_2(\mu_3-\eta^2:\eta^2-C_{60})$	-1.13	-1.48	-2.09		DCB	11
C ₆₀	-1.06	-1.43	-1.91	-2.38	CB	7
$\operatorname{Re}_{3}(\mu-H)_{3}(\operatorname{CO})_{9}(\mu_{3}-\eta^{2}:\eta^{2}-C_{60})$ (4)	-0.95	-1.24	-1.34	-1.73	CB	7
$\operatorname{Re}_{3}(\mu-H)_{3}(\operatorname{CO})_{8}(\operatorname{PPh}_{3})(\mu_{3}-\eta^{2}:\eta^{2}:\eta^{2}-C_{60})$	-1.04	-1.35	-1.75	-1.77	CB	7

^{*a*} The cathodic peak potentials (E_{pc}) at the scan rate of 20.5 V/s are given in parentheses. ^{*b*} Half-wave potentials could not be obtained due to very fast decomposition of 1^{3-} , 21^{3-} , and 22^{3-} .

On the other hand, the μ_3 - η^2 : η^2 : η^2 -C₆₀ metal cluster complexes show reversible redox waves within the solvent cutoff and remarkable electrochemical stabilities. The C60localized first and second reduction waves of Os₃(CO)₉- $(\mu_3 - \eta^2 : \eta^2 : \eta^2 - C_{60})$ (2) and Re₃ $(\mu - H)_3(CO)_9(\mu_3 - \eta^2 : \eta^2 - C_{60})$ (4) are shifted to more positive potentials by 0.10 and 0.13 V and by 0.11 and 0.19 V, respectively, in comparison with those of free C₆₀.^{7,11} This anodic shift may be ascribed to the inductive effect of the metal carbonyl cluster addends on the stabilization of the C60-localized LUMO. The anodic shifts of the third and fourth waves of 2 (0.29, 0.64 V) and 4 (0.57, 0.65 V) are even more pronounced, which suggests that the electron density in 2^{2-} , 2^{3-} , 4^{2-} , and 4^{3-} is significantly delocalized to the metal cluster center. A theoretical study on the ruthenium analogue 3 seems to support our electrochemical data.³¹ While the first two reductions place electrons in the mostly C₆₀-based LUMO, the two LUMO + 1 orbitals contain some $Ru_3(CO)_9$ character and thus allow electron delocalization into the cluster moiety.³¹ Substitution of phosphine ligands in 2 and 4 not only results in cathodic shifts of reduction potentials due to the donating property of the ligands, but also influences the overall electrochemical behavior of the C₆₀ complexes, as shown in Table 1. Similar C₆₀-mediated electron delocalization into the cluster moiety and phosphine ligand-induced cathodic shifts of reduction potentials were also observed for Ru₅C-C₆₀ and PtRu₅C-C₆₀ clusters.³² This observation promises an important possibility that the electronic properties of C₆₀-metal cluster complexes can be fine-tuned by modification in the coordination sphere of the metal cluster moieties.

Bisfullerene compounds have received considerable attention due to their potential for future optical and electronic applications.³³ In the cases of organic bisfullerene compounds, a weak, through-space electronic communication between C₆₀ cages has been observed only for C₁₂₀O,³⁴ C₁₂₀(CH₂)₂,³⁵ and C₁₂₀C,³⁶ where the fullerenes

FIGURE 8. Cyclic voltammogram of 11 (Scan rate = 10 mV/s).

are directly bonded to each other or are separated by a single carbon spacer. The intercage electronic communication can be dramatically increased by the presence of a metal cluster spacer. The cyclic voltammogram (CV) of Rh₆(CO)₅(dppm)₂(CNCH₂C₆H₅)(μ_3 - η^2 : η^2 : η^2 -C₆₀)₂ (**11**) exhibits six well-separated reversible, one-electron redox waves localized at C₆₀ cages (Figure 8).¹⁷ Each redox wave of 11 corresponds to sequential, pairwise addition of six electrons into the two C_{60} centers to form $C_{60}^{-}-Rh_6-C_{60}$, $C_{60}^{-}-Rh_6-C_{60}^{-}$, $C_{60}^{2-}-Rh_6-C_{60}^{-}$, ..., and ultimately $C_{60}^{3-} Rh_6 - C_{60}^{3-}$. The electronic environment for the two C_{60} centers in 11 is very similar despite the difference in coordination spheres around the two C₆₀ centers, since there is little difference between donor effects of a phosphine ligand and a benzyl isocyanide ligand in C₆₀metal cluster complexes.¹⁷ Therefore, the large peak separations $[\Delta(E_{1/2}^{-1}, E_{1/2}^{-2}) = 0.19 \text{ V}, \Delta(E_{1/2}^{-3}, E_{1/2}^{-4}) = 0.24 \text{ V},$ and $\Delta(E_{1/2}^5, E_{1/2}^6) = 0.29$ V] in the three redox pairs of the two C₆₀ ligands reflect an unusually strong electronic communication between the two C₆₀ centers via the Rh₆ spacer. In compound 11, the long distance (3.55 Å) between the two C_{60} centers limits π -orbital overlap of separate C₆₀ cages, and thus contribution of the throughspace electronic communication is expected to be negligible. The second redox wave in each pair in the CVs of 11 becomes increasingly separated from the first wave as the reduction proceeds, presumably due to the effects of increasing Coulombic repulsion between the two C₆₀ moieties.

Concluding Remarks

[60]Fullerene can bind a variety of metal clusters via η^2 - C_{60} , μ - η^2 : η^2 - C_{60} , and μ_3 - η^2 : η^2 : η^2 - C_{60} π -type bonding modes, acting as 2e-, 4e-, and 6e-donor ligands. Interestingly, modification of the coordination sphere of μ_3 - η^2 : η^2 : η^2 : η^2 -C₆₀ metal cluster complexes results in new bonding modes, such as π -type μ - η^2 : η^2 -C₆₀ and σ - σ mixed types μ_3 - η^1 : η^2 : η^{1-} and $\mu_{3}-\eta^{1}:\eta^{2}-C_{60}$, where C_{60} is a 4e-donor ligand. Such a facile orbital rehybridization on a cluster core provides a new synthetic route to C_{60} -metal σ -complexes, which are very important in selective functionalization of C₆₀. The C₆₀-metal cluster complexes reveal an unusual electronic communication between C₆₀ and metal cluster moieties. In particular, the effective overlap of C_{60} p- π orbitals and metal d- π orbitals in μ_3 - η^2 : η^2 : η^2 -C₆₀ metal cluster complexes leads to a remarkable electrochemical stability of the reduced states and a strong electrochemical interaction between C_{60} and cluster centers as well as between two C₆₀ cages bridged by a metal cluster spacer. The electronic properties of C₆₀-metal cluster complexes can be readily fine-tuned by modification of the ligands of metal cluster moieties. Further development in C₆₀metal cluster chemistry, utilizing a number of available cluster systems, would undoubtedly result in not only the discovery of new interaction types between C₆₀ and metal surfaces but also practical applications of this unique family of C_{60} -metal cluster compounds in electronic device fabrication.

J.T.P. is greatly indebted to all of his colleagues, whose names are given in the references. This work was supported by the National Research Laboratory (NRL) Program of Korean Ministry of Science & Technology (MOST) and by the Korea Science & Engineering Foundation (Project No. 1999-1-122-001-5). We thank Prof. John R. Shapley at UIUC for helpful discussions.

References

- Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Solid C₆₀: a new form of carbon. *Nature* **1990**, *347*, 354–358.
 (a) Wudl, F. The Chemical Properties of Buckminsterfullerene (C₆₀)
- (2) (a) Wudl, F. The Chemical Properties of Buckminsterfullerene (C₆₀) and the Birth and Infancy of Fulleroids. *Acc. Chem. Res.* **1992**, 25, 157–161. (b) Hirsch, A. The Chemistry of the Fullerenes; Thieme: New York, 1994. (c) Diederich, F.; Thilgen, C. Covalent Fullerene Chemistry. *Science* **1996**, 271, 317–323. (d) Taylor, R. *Lecture Notes on Fullerene Chemistry: A Handbook for Chemists*; Imperial College Press: London, 1999.
 (a) Stephens, A.; Green, M. L. H. Organometallic Complexes of
- (3) (a) Stephens, A.; Green, M. L. H. Organometallic Complexes of Fullerenes. Adv. Inorg. Chem. 1997, 44, 1–43. (b) Mathur, P.; Mavunkal, I. J.; Umbarkar, S. B. Synthetic Methodologies and Structures of Metal–[C₆₀]Fullerene Complexes. J. Cluster Sci. 1998, 9, 393–415. (c) Balch, A. L.; Olmstead, M. M. Reactions of Transition Metal Complexes with Fullerenes (C₆₀, C₇₀, etc.) and Related Materials. Chem. Rev. 1998, 98, 2123–2165.
- (4) (a) Govindaraj, A.; Satishkumar, B. C.; Nath, M.; Rao, C. N. R. Metal Nanowires and Intercalated Metal Layers in Single-Walled Carbon Nanotube Bundles. *Chem. Mater.* 2000, *12*, 202–205. (b) Hermans, S.; Sloan, J.; Shephard, D. S.; Johnson, B. F. G.; Green, M. L. H. Bimetallic nanoparticles aligned at the tips of carbon nanotubes. *Chem. Commun.* 2002, 276–277.
- (5) (a) Fagan, P. J.; Calabrese, J. C.; Malone, B. The Chemical Nature of Buckminsterfullerene (C₆₀) and the Characterization of a Platinum Derivative. *Science* **1991**, *252*, 1160–1161. (b) Balch, A. L.; Catalano, V. J.; Lee, J. W. Accumulating Evidence for the Selective Reactivity of the 6–6 Ring Fusion of C₆₀. Preparation and Structure of (η²-C₆₀)Ir(CO)CI(PPh₃)₂·SC₆H₆. *Inorg. Chem.* **1991**, *30*, 3980–3981. (c) Koefod, R. S.; Hudgens, M. F.; Shapley, J. R. Organometallic Chemistry with Buckminsterfullerene. Preparation and Properties of an Indenyliridium(I) Complex. *J. Am. Chem.*

Soc. 1991, 113, 8957-8958. (d) Fagan, P. J.; Calabrese, J. C.; Malone, B. A Multiply-Substituted Buckminsterfullerene (C₆₀) with an Octahedral Array of Platinum Atoms. J. Am. Chem. Soc. 1991, 113, 9408-9409. (e) Douthwaite, R. E.; Green, M. L. H.; Stephens, A. H. H.; Turner, J. F. C. Transition Metal-carbonyl, -hydrido and -η-Cyclopentadienyl Derivatives of the Fullerene C₆₀. Chem. Commun. 1993, 1522-1523. (f) Bashilov, V. V.; Petrovskii, P. V. Sokolov, V. I.; Lindeman, S. V.; Guzey, I. A.; Struchkov, Y. T. Synthesis, Crystal, and Molecular Structure of the Palladium(0)-Fullerene Derivative (η^2 -C₆₀)Pd(PPh₃)₂. Organometallics **1993**, *12*, 991-992. (g) Balch, A. L.; Lee, J. W.; Noll, N. C.; Olmstead, M. M. Structural Characterization of $\{(\eta^2-C_{60})RhH(CO)(PPh_3)_2\}$: Product of the Reaction of C₆₀ with the Hydrogenation Catalyst {RhH(CO)-(PPh₃)₂}. Inorg. Chem. 1993, 32, 3577-3578. (h) Hsu, H.-F.; Du, Y.; Albrecht-Schmitt, T. E.; Wilson, S. R.; Shapley, J. R. Structural Comparison of M(CO)₃(dppe)(η^2 -C₆₀) (M = Mo, W), Mo(CO)₃-(dppe)(η²-C₇₀), and W(CO)₃(dppe)(η²-trans-C₂H₂(CO₂Me)₂). Organometallics 1998, 17, 1756-1761.

- (6) (a) Rasinkangas, M.; Pakkanen, T. T.; Pakkanen, T. A.; Ahlgrén, M.; Rouvinen, J. Multimetallic Binding to Fullerenes: C₆₀{Ir₂Cl₂-(1,5-COD)₂}. A Novel Coordination Mode to Fullerenes. J. Am. Chem. Soc. 1993, 115, 4901. (b) Mavunkal, I. J.; Chi, Y.; Peng, S.-M.; Lee, G.-H. Preparation and Structure of Cp*₂Ru₂(u-Cl)(u-X)-(C₆₀), X = H and Cl. Novel Dinuclear Fullerene Complexes with and without Direct Ruthenium–Ruthenium Bonding. Organometallics 1995, 14, 4454–4456. (c) Chernega, A. N.; Green, M. L. H.; Haggitt, J.; Stephens, A. H. H. New Transition-metal Derivatives of the Fullerene C₆₀. J. Chem. Soc., Dalton Trans. 1998, 755–767.
- (7) Song, H.; Lee, Y.; Choi, Z.-H.; Lee, K.; Park, J. T.; Kwak, J.; Choi, M.-G. Synthesis and Characterization of μ₃-η²,η²,η²-C₆₀ Trirhenium Hydrido Cluster Complexes. *Organometallics* **2001**, *20*, 3139– 3144.
- (8) Hsu, H.-F.; Shapley, J. R. Ru₃(CO)₉(μ₃-η²:η²:η²-C₆): A Cluster Face-Capping, Arene-Like Complex of C₆₀. J. Am. Chem. Soc. **1996**, 118, 9192–9193.
- (9) Hsu, H.-F.; Shapley, J. R. Triruthenium cluster complexes of C₆₀ and C₇₀: Carbonyl site exchange probed via triphenylphosphine ligand derivatives. *J. Organomet. Chem.* **2000**, *599*, 97–105.
- (10) Park, J. T.; Song, H.; Cho, J.-J.; Chung, M.-K.; Lee, J.-H.; Suh, I.-H. Synthesis and Characterization of η²-C₆₀ and μ₃-η²,η²,η²,η²-C₆₀ Triosmium Cluster Complexes. *Organometallics* **1998**, 17, 227– 236.
- (11) Song, H.; Lee, K.; Park, J. T.; Choi, M.-G. Synthesis, Structure, and Electrochemical Studies of μ₃-η²,η²,η²,η²-C₆₀ Triosmium Complexes. *Organometallics* **1998**, *17*, 4477–4483.
- (12) Song, H.; Lee, K.; Park, J. T.; Chang, H. Y.; Choi, M.-G. Fluxional processes and structural characterization of μ₃-η²,η²,η²-Ω₆₀ triosmium cluster complexes, Os₃(CO)_{9-n}(PMe₃)_n(μ₃-η²,η²,η²-Ω₆₀) (n = 1, 2, 3). *J. Organomet. Chem.* **2000**, *599*, 49–56.
- (13) Lee, K.; Hsu, H.-F.; Shapley, J. R. Coordination of C₆₀ to Pentaand Hexaruthenium Cluster Frames. *Organometallics* **1997**, *16*, 3876–3877.
- (14) Lee, K.; Shapley, J. R. Face-Coordinated C₆₀ Complexes with Carbido Pentaruthenium Cluster Cores Including a Bimetallic Platinum–Pentaruthenium Complex. *Organometallics* **1998**, *17*, 3020–3026.
- (15) Lee, K.; Lee, C. H.; Song, H.; Park, J. T.; Chang, H. Y.; Choi, M.-G. Interconversion between μ-η²,η²-C₆₀ and μ₃-η²,η²,η²-C₆₀ on a Carbido Pentaosmium Cluster Framework. *Angew. Chem., Int. Ed.* **2000**, *39*, 1801–1804.
- (16) Lee, K.; Choi, Z.-H.; Cho Y.-J.; Song, H.; Park, J. T. Reversible Interconversion between μ-η²,η²-C₆₀ and μ₃-η²,η²,η²-Ω₆₀ on a Carbido Pentaosmium Cluster Framework. *Organometallics* 2001, 20, 5564–5570.
- (17) Lee, K.; Song, H.; Kim, B.; Park, J. T.; Park, S.; Choi, M.-G. The First Fullerene-Metal Sandwich Complex: An Unusually Strong Electronic Communication between Two C₆₀ Cages. J. Am. Chem. Soc. 2002, 124, 2872–2873.
- (18) Park, J. T.; Cho, J.-J.; Song, H. Triosmium Cluster Derivatives of [60]Fullerene. Chem. Commun. 1995, 15–16.
- (19) Park, J. T.; Cho J.-J.; Song, H.; Jun, C.-S.; Son, Y.; Kwak, J. Electrochemical Studies of C₆₀-Triosmium Complexes: First Evidence for a C₆₀-Mediated Electron Transfer to the Metal Center. *Inorg. Chem.* **1997**, *36*, 2698–2699.
- (20) Haddon, R. C. π-Electrons in Three Dimensions. Acc. Chem. Res. 1988, 21, 243–249.
- (21) Braga, D.; Dyson, P. J.; Grepioni, F.; Johnson, B. F. G. Arene Clusters. *Chem. Rev.* **1994**, *94*, 1585–1620.
- (22) Jin, X.; Xie, X.; Tang, K. Syntheses and X-ray crystal structures of dumbbell-shaped bis-fullerene tungsten and molybdenum complexes. *Chem. Commun.* 2002, 750–751.
- (23) (a) Song, H.; Lee, K.; Lee, C. H.; Park, J. T.; Chang, H. Y.; Choi, M.-G. First Example of the μ₃-η¹,η²,η¹-C₆₀ Bonding Mode: Ligand-Induced Conversion of π to σ C₆₀-Metal Complexes. Angew.

Chem., Int. Ed. **2001**, 40, 1500–1502. (b) Song, H.; Lee, C. H.; Lee, K.; Park, J. T. Ligand Induced Conversion of π to σ C₆₀–Metal Cluster Complexes: Full Characterization of μ_3 - η^1 : η^2 : η^1 -C₆₀ Bonding Mode. *Organometallics* **2002**, 21, 2514–2520.

- (24) (a) Zhang, S.; Brown, T. L.; Du, Y.; Shapley, J. R. Metalation of C₆₀ with Pentacarbonylrhenium Radicals. Reversible Formation of C₆₀{Re(CO)₅}₂. J. Am. Chem. Soc. **1993**, *115*, 6705–6709. (b) Zhu, Y.-H.; Song, L.-C.; Hu, Q.-M.; Li, C.-M. Synthesis and Isolation of *σ*-Bonded Fullerene Metal Derivatives from Reactions of Fullerene Dianion C₆₀²⁻ with Organometal Halides. Org. Lett. **1999**, *1*, 1693–1695.
- (25) Song, H.; Lee, K.; Choi, M.-G.; Park, J. T. [60] Fullerene as a Versatile Four-electron Donor Ligand. *Organometallics* 2002, *21*, 1756–1758.
- (26) (a) Blake, A. J.; Dyson, P. J.; Johnson, B. F. G.; Martin, C. M.; Nairn, J. G. M.; Parisini, E.; Lewis, J. New Synthetic Routes to [M₃(CO)₉-(μ₃,η²:η²:η²-C₆H₆)] M = Ru or Os). *J. Chem. Soc., Dalton Trans.* 1993, 981–984. (b) Braga, D.; Grepioni, F.; Parisini, E.; Johnson, B. F. G.; Martin, C. M.; Nairn, J. G. M.; Lewis, J.; Martinelli, M. Synthesis of [M₃H(CO)₉(μ₃-σ:η²,η²-C₆H₇)] (M = Ru or Os). Molecular and Crystal Structure of the Ruthenium Cluster. *J. Chem. Soc., Dalton Trans.* 1993, 1891–1895.
- (27) Braga, D.; Grepioni, F.; Sabatino, P.; Dyson, P. J.; Johnson, B. F. G.; Lewis, J.; Bailey, P. J.; Raithby, P. R.; Stalke, D. Synthesis and Structural Characterization of Diene and Benzene Pentaruthenium Clusters. J. Chem. Soc., Dalton Trans. 1993, 985–992.
- (28) Xie, Q.; Pérez-Cordero, E.; Echegoyen, L. Electrochemical Detection of C_{60}^{6-} and C_{70}^{6-} : Enhanced Stability of Fullerides in Solution. *J. Am. Chem. Soc.* **1992**, *114*, 3978–3980.
- (29) Koefod, R. S.; Xu, C.; Lu, W.; Shapley, J. R.; Hill, M. G.; Mann, K. R. An Electrochemical Study of an Iridium–Buckminsterfullerene

Complex. Evidence for C_{60} -Localized Reductions. J. Phys. Chem. **1992**, 96, 2928–2930.

- (30) Lerke, S. A.; Parkinson, B. A.; Evans, D. H.; Fagan, P. J. Electrochemical Studies on Metal Derivatives of Buckminsterfullerene (C₆₀). J. Am. Chem. Soc. **1992**, *114*, 7807–7813.
- (31) Lynn, M. A.; Lichtenberger, D. L. Comparison of the Bonding of Benzene and C₆₀ to a Metal Cluster: Ru₃(CO)₉(μ₃-η²,η²,η²-C₆H₆) and Ru₃(CO)₉(μ₃-η²,η²,η²-C₆). J. Cluster Sci. 2000, 11, 169–188.
- (32) Babcock, A. J.; Li, J.; Lee, K.; Shapley, J. R. Electrochemistry of Carbidopentaruthenium C₆₀ Complexes and Related Clusters. *Organometallics* 2002, *21*, 3940–3946.
- (33) (a) Hummelen, J. C.; Knight, B.; Pavlovich, J.; González, R.; Wudl, F. Isolation of the Heterofullerene C₅₉N as Its Dimer (C₅₉N)₂. *Science* **1995**, 269, 1554–1556. (b) Wang, G.-W.; Komatsu, K.; Murata, Y.; Shiro, M. Synthesis and X-ray structure of dumb-bellshaped C₁₂₀. *Nature* **1997**, 387, 583–586. (c) Segura, J. L.; Martín, N. [60]Fullerene dimers. *Chem. Soc. Rev.* **2000**, 29, 13–25.
- Balch, A. L.; Costa, D. A.; Fawcett, R.; Winkler, K. Electronic Communication in Fullerene Dimers. Electrochemical and Electron Paramagnetic Resonance Study of the Reduction of C₁₂₀O. *J. Phys. Chem. B* 1996, *100*, 4823–4827.
- (35) Dragoe, N.; Shimotani, H.; Hayashi, M.; Saigo, K.; de Bettencourt-Dias, A.; Balch, A. L.; Miyake, Y.; Achiba, Y.; Kitazawa, K. Electronic Interactions in a New Fullerene Dimer: C₁₂₂H₄, with Two Methylene Bridges. *J. Org. Chem.* **2000**, *65*, 3269–3273.
- (36) Dragoe, N.; Shimotani, H.; Wang J.; Iwaya, M.; de Bettencourt-Dias, A.; Balch, A. L.; Kitazawa, K. First Unsymmetrical Bisfullerene, C₁₂₁: Evidence for the Presence of Both Homofullerene and Methanofullerene Cages in One Molecule. *J. Am. Chem. Soc.* 2001, *123*, 1294–1301.

AR020149A